

G&B Fissaggi S.r.I. C.so Savona 22 1029 Villastellone (TO), Italia tel. +39 011 9619433 - fax +39 011 9619382 www.gebfissaggi.com - info@gebfissaggi.com

Declaration of Performance

No. DPGEB1034 v1

1. Unique identification code of the product-type: **Gebofix PRO VE-SF SISMIK**

2. Intended uses:

Intended use of	the construction product according to ETA 19/0699
Generic type	Bonded injection type anchor for use in non-cracked and cracked concrete
Anchorages subject to	 Static and quasi-static loads: threaded rod M8, M10, M12, M16, M20, M24, M27, M30 reinforcing bar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32 Seismic actions for Performance Category C1: threaded rod M10, M12, M16, M20, M24, steel with rupture elongation A₅ ≥ 19 % Seismic actions for Performance Category C2: threaded rod M12, M16, M20, M24, steel with rupture elongation A₅ ≥ 19 %
Base materials	 Reinforced or unreinforced normal weight concrete according to EN 206-1:2013 Strength class C20/25 to C50/60 according to EN 206-1:2013 Non-cracked concrete threaded rod M8, M10, M12, M16, M20, M24, M27, M30 reinforcing bar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32 Cracked concrete threaded rod M10, M12, M16, M20, M24
Service temperature	 I: -40 °C to +40 °C (max. short term temperature +40 °C and max. long term temperature +24 °C) II: -40 °C to +80 °C (max. short term temperature +80 °C and max. long term temperature +50 °C)
Environmental conditions	 X1: Structures subject to dry internal conditions zinc plated or hot-dip galvanised steel class 4.6, 5.8 or 8.8 stainless steel A2-70, A4-70 or A4-80 high corrosion resistant steel X2: Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist stainless steel A4-70 or A4-80 high corrosion resistant steel X3: Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions exist high corrosion resistant steel Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used)
Concrete conditions	 I1: Installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete threaded rod M8, M10, M12, M16, M20, M24, M27, M30 reinforcing bar Ø8, Ø10, Ø12, Ø16, Ø20, Ø25, Ø32 I2: Installation in water-filled holes (not sea water) and use in service in dry or wet concrete threaded rod M8, M10, M12, M16 reinforcing bar Ø8, Ø10, Ø12, Ø16
Installation	Perforation by hammer drilling Installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters on job site Installation direction: D3 - downward and horizontal and upwards (e.g. overhead) installation

Intended use of	the construction product according to ETA 19/0699
Design	Anchorages designed in accordance with EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work. Verifiable calculation notes and drawings prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings. Anchorages under seismic actions (cracked concrete) designed in accordance with EN 1992-4.

Intended use of	the construction product according to ETA 16/0599
Generic type	Injection system for post-installed connections of reinforcing bars in existing structures
Anchorages subject to	Static and quasi-static loads: reinforcing bar Ø8, Ø10, Ø12, Ø14, Ø16, Ø20, Ø25, Ø28, Ø32
Base materials	 Reinforced or unreinforced normal weight concrete according to EN 206-1:2000 Strength class C12/15 to C50/60 according to EN 206-1:2000 Non-carbonated concrete Maximum chloride content 0.40% (CL 0.40) according to EN 206-1:2000
Service temperature	-40 °C to +80 °C (max. short term temperature +80 °C and max. long term temperature +50 °C)
Concrete condition	Installation in dry or wet concrete
Installation	Dry or wet concrete. Installation in flooded holes is not allowed. Hole drilling by hammer drill or compressed air drill. The installation of post-installed rebars shall be done only by suitable trained installer and under supervision on site. The conditions under which an installer may be considered as suitable trained and the conditions for supervision on site are up to the Member States in which the installation is done. Check the position of the existing rebars.
Design	Anchorages designed under the responsibility of an engineer experienced in anchorages and concrete work. Verifiable calculation notes and drawings prepared taking account of the forces to be transmitted. Design according to EN 1992-1-1:2004 The position of the reinforcement in the existing structure shall be determined on the basis of the construction documentation and taken into account when designing.

Intended use of	the co	nstruction product according	to ETA 16/0919									
Generic type	Bond	ed injection type anchor for use	in masonry									
Anchorages subject to	Static	and quasi-static loads										
Base materials		of base material solid masonry										
			type acc. to EN 771-1 and 2	L/W/H [mm]	min. density ρ [kg/dm³]	min. compr. strength f _b [N/mm ²]						
		b1. solid clay brick	MZ-NF	240/115/71	1.9	20						
		b2. solid calcium silicate brick	KSV-NF	240/115/71	1.8	25						
	c:	hollow masonry										
			type acc. to EN 771-1 and 2	L/W/H [mm]	min. density ρ [kg/dm³]	min. compr. strength f _b [N/mm ²]						
		c1. hollow clay brick	Porotherm P+W	373/250/238	0.9	12						

Intended use of	the construction product according	g to ETA 16/0919			
	c2. hollow clay brick	Hueco Doble	245/110/88	0.74	2.5
	c3. hollow calcium silicate brick	KSL-R-12-1,2- 16DF	239/248/239	1.3	15
	Anchor rod in hollow or perforated m threaded rod M8, M10, M12	nasonry with plast	ic sieve sleeve		
Service temperature	T _b : -40 °C to +80 °C (max. short t +50 °C)	term temperature	+80 °C and m	ax. long ter	m temperature
Environmental conditions	 X1: Structures subject to dry inter zinc plated, hot-dip galvanis stainless steel A2-70, A4-70 high corrosion resistant stee 	ed or zinc diffusio or A4-80	n coated steel	class 5.8, 8.	8 or 10.9
Use categories	Installation and use d/d: Installation and use in structure w/d: Installation in dry or wet substr				nal conditions
Installation	Installation carried out by appropria person responsible for technical mat		sonnel and un	der the sup	ervision of the
Design	Anchorages designed in accordance responsibility of an engineer experie Verifiable calculation notes and dra the region of the anchorage, the loa of the structure. The position of the a	nced in anchorag wings prepared ta ds to be transmitt	es and masonr aking account of ted and their tra	y work. of the releva ansmission t	ant masonry in

3. Manufacturer: G&B Fissaggi S.r.I. C.so Savona 22, Villastellone (TO), Italia

5. System of AVCP: 1

6b.

European Assessment Document: EAD 330499-01-0601

European Technical Assessment: ETA 19/0699

Technical Assessment Body: TECHNICKÝ A ZKUŠEBNÍ ÚSTAV STAVEBNÍ PRAHA, s.p. Notified Body: 1020 TECHNICKÝ A ZKUŠEBNÍ ÚSTAV STAVEBNÍ PRAHA, s.p.

European Assessment Document: ETAG 001 Part 1 and Part 5, edition 2013, used as EAD

European Technical Assessment: ETA 16/0599

Technical Assessment Body: TECHNICKÝ A ZKUŠEBNÍ ÚSTAV STAVEBNÍ PRAHA, s.p.

Notified Body: 1020 TECHNICKÝ A ZKUŠEBNÍ ÚSTAV STAVEBNÍ PRAHA, s.p.

European Assessment Document: EAD 330076-00-0604

European Technical Assessment: ETA 16/0919

Technical Assessment Body: TECHNICKÝ A ZKUŠEBNÍ ÚSTAV STAVEBNÍ PRAHA, s.p. Notified Body: 1020 TECHNICKÝ A ZKUŠEBNÍ ÚSTAV STAVEBNÍ PRAHA, s.p.

7. Declared performances:

Declared performances according to EAD 330499-01-0601, ETA 19/0699

Thread	ed rod diameter	M8	M10	M12	M16	M20	M24	M27	M30				
Essential characteristics				Performance									
Installat	tion parameters												
d	Nominal diameter of bar	[mm]	8	10	12	16	20	24	27	30			
d ₀	Nominal diameter of drill bit	[mm]	10	12	14	18	22	26	30	35			
d _b	Diameter of the steel brush	[mm]	12	14	16	20	26	30	35	43			
d _{fix}	Diameter of clearance hole in the fixture	[mm]	9	12	14	18	22	26	30	33			
$h_{\text{ef,min}}$	Minimum effective anchorage depth	[mm]	64	80	96	128	160	192	216	240			

Threaded	roc	d diamet	er			M8	M10	M12	M16	M20	M24	M27	M30
Essential	esential characteristics Maximum effective anchorage depth [m						1		Perfor	mance			L
h _{ef,max}			ffective anchor	age	[mm]	160	200	240	320	400	480	540	600
h ₁	De	pth of the	e drilling hole		[mm]				h	l _{ef}		<u>,</u>	
h _{min}		nimum th ember	ickness of the	concrete	[mm]			+ 30 100			h _{ef} +	• 2d ₀	
T _{inst}	Ма	ıximum ir	nstallation torqu	le	[Nm]	10	20	40	80	150	200	240	275
t _{fix}	Thi	ickness c	of fixture		[mm]				0 to	1500			
Smin	Mir	nimum sp	bacing		[mm]	35	40	50	65	80	96	110	120
C _{min}			dge distance		[mm]	35	40	50	65	80	96	110	120
Tension st	eel	failure m	ode										
N _{Rk,s} N _{Rk,s,seis,C1} N _{Rk,s,seis,C2}	Ch ste		tic tension resi	stance of	[kN]				A _s :	x f _{uk}			
	pul	ll-out and	l concrete failui	re mode									
Characteri	istic	bond re	sistance					<u> </u>					
		temp. I	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm ²]	10.0	9.0	8.5	8.0	7.5	7.0	5.5	5.0
non-crack	non-cracked flooded holes $\tau_{Rk,ucr}$				[N/mm ²]	8.0	7.0	6.5	6.0		NPD		
concrete		temp. II	dry and wet concrete	$ au_{Rk,ucr}$	[N/mm²]	9.0	8.5	8.0	7.5	7.0	6.5	5.0	4.5
		-	flooded holes	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	7.5	6.5	6.0	5.5		N	PD	
		dry and wet concrete temp. I	concrete	$\tau_{\text{Rk,cr}}$	[N/mm ²]	NPD	5.0	5.0	5.0	5.0	5.0	N	PD
				$\tau_{\text{Rk,cr,seis,C1}}$	[N/mm ²]	NPD	3.1	3.7	3.7	3.7	3.8	N	PD
				$\tau_{\text{Rk,cr,seis,C2}}$	[N/mm ²]	NF	PD	1.1	1.3	1.5	1.5 NPD NPD		
			$\tau_{\text{Rk,cr}}$	[N/mm ²]	NPD	4.0	5.0	5.0					
			flooded holes	$\tau_{\text{Rk,cr,seis,C1}}$	[N/mm ²]	NPD	3.1	3.7	3.7		N	D	
cracked				$\tau_{\text{Rk,cr,seis,C2}}$	[N/mm ²]				N	PD			
concrete				$\tau_{\text{Rk,cr}}$	[N/mm ²]	NPD	3.5	4.0	4.0	4.0	4.0	N	PD
			dry and wet concrete	$\tau_{\text{Rk,cr,seis,C1}}$	[N/mm ²]	NPD	2.2	2.7	2.7	2.7	2.8	N	PD
		temp. II	001101010	$\tau_{\text{Rk,cr,seis,C2}}$	[N/mm ²]	NF	D	1.0	1.2	1.4		NPD	
		temp. n		$\tau_{\text{Rk,cr}}$	[N/mm ²]	NPD	3.0	4.0	4.0		N	D	
			flooded holes	$\tau_{\text{Rk,cr,seis,C1}}$	[N/mm ²]	NPD	1.9	2.7	2.7		N	D	
				$\tau_{\text{Rk,cr,seis,C2}}$	[N/mm ²]				N	D			
Ψc,C30/37		creasing 30/37	factor for conc	rete	[-]				1.	04			
Ψc,C40/50	^{I/c,C40/50} Increasing factor for concrete C40/50		rete	[-]				1.	08				
ψ _{c,C50/60}	050/00				[-]	1.10							
Concrete cone failure mode													
Rucr,N Factor for non-cracked concrete				ncrete	[-]	11.0							
k _{cr,N}					[-]	NPD 7.7							
S _{cr,N}	-	ritical spa	-		[mm]				3.0) h _{ef}			
C _{cr,N}	Cr	ritical edg	je distance		[mm]				1.5	i h _{ef}			

Threaded	rod diameter		M8	M10	M12	M16	M20	M24	M27	M30		
Essential	characteristics					Perfor	mance	•				
Splitting fa	ilure mode											
S _{cr,sp}	Critical spacing for splitting	[mm]				2 0	cr,sp					
	Critical edge distance for splitting for $h/h_{ef} \ge 2.0$	[mm]				1.0) h _{ef}					
C _{cr,sp}	Critical edge distance for splitting for 2.0 > h/h_{ef} > 1.3	[mm]	4.6 h _{ef} – 1.8 h									
	Critical edge distance for splitting for $h/h_{ef} \le 1.3$	[mm]		2.26 h _{ef}								
Installatior	safety factor											
γмс,	Safety factor, dry and wet concrete	[-]			1	.2			1	.4		
γмр, γмsp	Safety factor, flooded holes	[-]		1	.4			NF	PD			
Shear stee	el failure mode without lever arm											
$V_{Rk,s}$	Characteristic shear resistance of steel	[kN]				0.5 x /	$A_s \ge f_{uk}$					
$V_{Rk,s,seis,C1}$	Characteristic shear resistance of steel under seismic actions cat. C1	[kN]	NPD		0.3	85 x A₅ :	x f _{uk}		N	PD		
$\alpha_{v,hdg,C1}$	Reduction factor for hot-dip galvanized rods	[-]	NPD	0.57	0.56	0.49	0.56	0.61	N	PD		
$V_{Rk,s,seis,C2}$	Characteristic shear resistance of steel under seismic actions cat. C2	[kN]	NPD 0.26 x A _s x f _{uk} NPD					NPD				
$\alpha_{v,hdg,C2}$	Reduction factor for hot-dip galvanized rods	[-]	NPD 0.46 0.61 0.61				NPD					
α_{gap}	Factor for annular gap	[-]	0.5									
k ₇	Ductility factor	[-]	1.0 for steel with rupture elongation $A_5 > 8$ %									
Shear stee	el failure mode with lever arm											
$M^0{}_{Rk,s}$	Characteristic bending resistance of steel	[Nm]				1.2 x \	N _{el} x f _{uk}					
$\begin{array}{c} M^0{}_{\text{Rk},s,seis,C1} \\ M^0{}_{\text{Rk},s,seis,C2} \end{array}$		[Nm]				N	PD					
Concrete p	pry-out failure mode											
k ₈	Factor for resistance to pry-out failure	[-]				2	.0					
γinst	Installation safety factor	[-]				1	.0					
Concrete e	edge failure mode											
l _f	Effective length of anchor	[mm]				min(h	_{ef} ; 8 d)					
d _{nom}	Outside diameter of anchor	[mm]	8	10	12	16	20	24	27	30		
γinst	Installation safety factor	[-]				1	.0					
Displacem	ent on tension load, non-cracked con	crete										
δ _{N0}	Short term displacement under tension load	[mm/kN]	0.05	0.04	0.03	0.02	0.02	0.02	0.01	0.01		
δ _{N∞}	Long term displacement under tension load	[mm/kN]	0.11	0.09	0.06	0.04	0.03	0.02	0.02	0.02		
Displacem	ent on tension load, cracked concrete	9						•	•	•		
δ _{N0}	Short term displacement under tension load	[mm/kN]	NPD	0.08	0.09	0.05	0.03	0.02	N	PD		

Threaded	rod diameter		M8	M10	M12	M16	M20	M24	M27	M30
δ _{N∞}	Long term displacement under tension load	[mm/kN]	NPD	0.51	0.32	0.18	0.13	0.11	NF	۶D
Displacen	nent on tension load, seismic actions	cat. C2								
$\delta_{\text{N,eq(DLS)}}$	Displacement Damage Limit State	[mm]	N	PD	0.57	0.35	0.85		NPD	
$\delta_{\text{N,eq(ULS)}}$	Displacement Ultimate Limit State	[mm]	N	PD	7.62	6.75	7.28		NPD	
Displacem	nent on shear load, non-cracked and o	cracked cor	ncrete							
δ_{V0}	Short term displacement under shear load	[mm/kN]	0.48	0.30	0.20	0.11	0.10	0.08	0.06	0.05
δ _{V∞}	Long term displacement under shear load	[mm/kN]	0.72	0.45	0.30	0.17	0.14	0.12	0.10	0.08
Displacement on shear load, seismic actions cat. C2										
$\delta_{\text{N,eq(DLS)}}$	Displacement Damage Limit State	[mm]	N	PD	5.29	4.12	4.94		NPD	
$\delta_{\text{N,eq(ULS)}}$	ULS) Displacement Ultimate Limit State [mm]		N	PD	10.20	9.05	10.99		NPD	

Reinfo	orcing b	oar diame	ter			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Essen	tial cha	racteristi	cs					Pe	rformar	ice		
Installa	ation pa	rameters										
d	Nom	inal diame	eter of bar		[mm]	8	10	12	16	20	25	32
d ₀	Nom	inal diame	eter of drill bit		[mm]	12	14	16	20	25	32	40
db	Diam	neter of th	e steel brush		[mm]	14	16	18	22	31	35	43
$\mathbf{h}_{\mathrm{ef,min}}$	Minir	num effec	tive anchorage d	epth	[mm]	64	80	96	128	160	200	256
h _{ef,max}	Maxi	mum effe	ctive anchorage of	depth	[mm]	160 200 240 320 4					480	640
h₁	Dept	h of the d	rilling hole		[mm]				h _{ef}			
h _{min}	Minir mem		ness of the conci	rete	[mm]		h _{ef} + 30 ≥ 100				h _{ef} + 2d)
S min	Minir	num spac	ing		[mm]	35	40	50	65	80	100	130
C _{min}	Minir	num edge	e distance		[mm]	35	40	50	65	80	100	130
Tensio	n steel	failure mo	de									
$N_{Rk,s}$	Char steel		tension resistanc	e of	[kN]				$A_s \ x \ f_{uk}$			
Combi	ined pul	l-out and	concrete failure n	node								
Charao	cteristic	bond resi	stance									
		temp. I	dry and wet concrete	$\tau_{\text{Rk,ucr}}$	[N/mm ²]	8,5	9,0	9,0	8,0	8,0	8,0	5,0
non-cra	acked		flooded holes	$\tau_{Rk,ucr}$	[N/mm ²]	7,5	8,5	8,5	8,0		NPD	
concre	ete	temp. II	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	7,5	8,0	8,0	7,5	7,5	7,0	4,5
			flooded holes	$\tau_{\rm Rk,ucr}$	[N/mm ²]	6,5	7,0	7,0	6,5		NPD	
ψc	Incre C50/		tor for concrete u	p to	[-]			1	1.0			
Concre	ete cone	e failure m	ode		1							
k _{ucr,N}	Fact	or for non-	-cracked concrete	9	[-]				11.0			
S _{cr,N}	Critic	Critical spacing			[mm]	3.0 h _{ef}						
C _{cr,N}	Critic	al edge d		[mm]	1.5 h _{ef}							
Splittin	ng failur	e mode										
S _{cr,sp}	Critic	al spacing	g for splitting		[mm]				2 c _{cr,sp}			_

Reinfo	rcing bar diameter		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32		
Essent	tial characteristics				Pei	formar	ice				
	Critical edge distance for splitting for $h/h_{ef} \ge 2.0$	[mm]				1.0 h _{ef}					
C _{cr,sp}	Critical edge distance for splitting for $2.0 > h/h_{ef} > 1.3$	[mm]	4.6 h _{ef} - 1.8 h								
	Critical edge distance for splitting for $h/h_{ef} \le 1.3$	[mm]				2.26 h _{et}	Ŧ				
Installa	tion safety factor										
	Safety factor, dry and wet concrete				1.2						
γinst	Safety factor, flooded holes	[-]		1	.4			NPD			
Shear s	steel failure mode without lever arm										
$V_{Rk,s}$	Characteristic shear resistance of steel	[kN]			0	$.5 \cdot A_s \cdot$	f _{uk}				
k 7	Ductility factor	[-]	1.0) for stee	el with ru	upture e	longatic	on A₅ > 8	3 %		
Shear s	steel failure mode with lever arm	•	•								
$M^0_{\rm Rk,s}$	Characteristic bending resistance of steel	[Nm]			1.:	2 · W _{el} ·	f _{uk}				
Concre	te pry-out failure mode										
k ₈	Factor for resistance to pry-out failure	[mm]				2.0					
γ _{inst}	Installation safety factor	[-]				1.0					
Concre	te edge failure mode	1									
l _f	Effective length of anchor	[mm]			mir	n(h _{ef} ; 8 c	I _{nom})				
d _{nom}	Outside diameter of anchor	[mm]	8	10	12	16	20	25	32		
γinst	Installation safety factor	[-]				1.0					
Displac	ement on tension load, non-cracked concr	ete									
δ _{N0}	Short term displacement under tension load	[mm/kN]	0.04	0.03	0.02	0.02	0.01	0.01	0.01		
δ _{N∞}	Long term displacement under tension load	[mm/kN]	0.09	0.07	0.05	0.03	0.02	0.01	0.01		
Displac	cement on shear load, non-cracked concret	te									
δ _{vo}	Short term displacement under shear load	[mm/kN]	0,05	0,04	0,03	0,02	0,01	0,01	0,01		
δ _{V∞}	Long term displacement under shear load	[mm/kN]	0,08	0,06	0,05	0,03	0,02	0,01	0,01		

Declared performances according to ETAG 001:2013 Part 1 and Part 5, 16/0599

Reinfo	orcing bar diameter	Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32	
Esser	ntial Characteristics				Ре	rformar	nce		-	-	
Install	ation parameters										
ds	Nominal diameter of bar	8	10	12	14	16	20	25	28	32	
d ₀	d ₀ Nominal diameter of drill bit [mm]				16	18	20	25	32	35	40

Reinforcing bar diameter					Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25	Ø28	Ø32
Essen	tial characte	eristics	5					Pe	rformar	nce			
	Minimum concrete cover	hammer drilling without drilling aid		[mm]		30	+ 0.06	· <i>I</i> _v ≥ 2	· d _s		40 + 0	.06 · / _v 2	≥ 2 · d _s
		hammer drilling with drilling aid		[mm]	$30 + 0.02 \cdot I_v \ge 2 \cdot d_s$ $40 + 0.02 \cdot I_v \ge 100$						40 + 0	.02 · / _v 2	≥ 2 · d₅
min c		compressed air drilling without drilling aid compressed air drilling with drilling aid		[mm]	50 + 0.08 · / _v 6					60	+ 0.08	• <i>I</i> v	
				[mm]	50 + 0.02 · <i>I</i> _v					60	60 + 0.02 · <i>I</i> _v		
I _{b,min}	Factor for <i>I</i> t related to c and drilling	oncrete	e class	[-]	1.0								
$I_{\rm v,max}$	Maximum ii	nstallat	ion length	[mm]	400	500	600	700	800	1000	1000	1000	1000
Bond I	resistance										•		
			C12/15	[N/mm ²]				1.6				1	.6
	Design ultimate bond resistance for all drilling methods and good conditions		C16/20	[N/mm ²]	2.0						2	.0	
			C20/25	[N/mm ²]	2.3						2	.3	
			C25/30	[N/mm ²]	2.7						2	2.3	
f _{bd}			C30/37	[N/mm ²]	3.0						2.3		
			C35/45	[N/mm ²]	3.0						2	.3	
			C40/50	[N/mm ²]	3.0					2.3			
			C45/55	[N/mm ²]	3.0				2	.3			
			C50/60	[N/mm ²]				3.0				2	.3

Declared performances according to EAD 330076-00-0604, ETA 16/0919

Thre	aded rod diameter	M8	M10	M12			
Esse	ential characteristics		Performance				
Insta	llation parameters						
ds	Sleeve diameter	[mm]	16	16	20		
ls	Sleeve length	Sleeve length				85	
d ₀	Nominal diameter of drill bit		[mm]	16	16	20	
\mathbf{h}_{ef}	f Effective anchorage depth			85	85	85	
\mathbf{h}_{nom}	Installation depth of sleeve			85	85	85	
h ₁	Depth of the drilling hole	[mm]	90	90	90		
d_{fix}	Diameter of clearance hole in the fixture			9	12	14	
T _{inst}	Maximum installation torque	[Nm]	2	2	2		
Edge	e distances and spacings						
C _{min} C _{cr}	Minimum and critical edge distance	b1 brick	[mm]	128	128	128	
		b2 brick	[mm]	128	128	128	
		c1 brick	[mm]	100	100	120	
		c2 brick	[mm]	100	100	120	
		c3 brick	[mm]	100	100	120	

Threa	aded rod diameter			M8	M10	M12		
Esse	ntial characteristics				Performance	9		
		b1 brick	[mm]	255	255	255		
S _{min,II} S _{cr,II}	Minimum and critical spacing, parallel to	b2 brick	[mm]	255	255	255		
		c1 brick	[mm]	373	373	373		
	horizontal joint	c2 brick	[mm]	245	245	245		
		c3 brick	[mm]	239	239	239		
		b1 brick	[mm]	255	255	255		
_	Minimum and critical spacing, perpendicular to horizontal joint	b2 brick	[mm]	255	255	255		
S _{min,} ⊥ S _{cr,} ⊥		c1 brick	[mm]	238	238	238		
JCI,±		c2 brick	[mm]	110	110	110		
		c3 brick	[mm]	248	248	248		
Tensi	ion and shear resistance, use category d/c	and w/d						
		b1 brick	[kN]	3.0	3.0	3.0		
		b2 brick	[kN]	3.0	3.0	3.0		
N _{Rk}	Characteristic tension resistance	c1 brick	[kN]	2.0	2.0	2.5		
		c2 brick	[kN]	0.9	1.2	1.5		
		c3 brick	[kN]	2.0	2.0	2.5		
	Characteristic shear resistance	b1 brick	[kN]	3.0	3.0	3.0		
		b2 brick	[kN]	3.0	3.0	3.0		
V _{Rk}		c1 brick	[kN]	2.0	2.0	2.5		
		c2 brick	[kN]	0.9	1.2	1.5		
		c3 brick	[kN]	2.0	2.0	2.5		
$V_{Rk,s}$	Characteristic shear resistance of steel	[kN]	0.5 x A _s x f _{uk}					
$M_{Rk,s}$	Characteristic bending resistance of stee	I	[Nm]		$1.2 \text{ x W}_{el} \text{ x f}_{uk}$	<		
Displ	acement on tension load							
N	Service tension load		[kN]	$N_{Rk}/(1.4 \cdot \gamma_M)$				
		b1 brick		0.06				
	Short term displacement under tension load	b2 brick		0.12				
δ _{ΝΟ}		c1 brick	[mm]	0.5				
		c2 brick		0.5				
		c3 brick		0.1				
		b1 brick		0.12				
	Long term displacement under tension load	b2 brick		0.24				
δ _{N∞}		c1 brick	[mm]	1.0				
		c2 brick		1.0				
		c3 brick		0.2				
Displ	acement on shear load							
V	Service shear load	[kN]	$V_{Rk}/1.4 \gamma_M$					
		b1 brick			0.7			
		b2 brick		0.8				
δνο	Short term displacement under shear	c1 brick	[mm]	1.0 ¹				
	load	c2 brick		1.0 ¹				
		c3 brick			0.9			

Thre	aded rod diameter	M8	M10	M12				
Essential characteristics				Performance				
	Long term displacement under shear load	b1 brick		1.0				
		b2 brick		1.4				
δv∞		c1 brick	[mm]	1.5 ¹				
		c2 brick		1.5 ¹				
		c3 brick		1.4				
β-fa	ctor for job site tests according to ETAG 0	29, Annex B	•					
		b1 brick		0.85				
	β-factor	b2 brick		0.85				
β		c1 brick	[-]	0.83				
		c2 brick		0.78				
		c3 brick		0.85				

¹ the hole gap between bolt and fixture shall be considered additionally

The performance of the product identified above is in conformity with the set of declared performances. This declaration of performance is issued, in accordance with Regulation (EU) No 305/2011, under the sole responsibility of the manufacturer identified above.

Signed for and on behalf of the manufacturer by:

Andrea Maggioni, General manager

fissaggi S.r.I. Corso Savona, n°22 10029 VILLASTELLONE (TO) Tel. 011 9619433 - Fax 011 9619382

Carl

30 100

Villastellone, 24 June 2022