

eota@tzus.cz

Designated according to Article 29 of Regulation (EU) No 305/2011

European Technical Assessment

ETA 19/0699 of 26/01/2020

Technical Assessment Body issuing the E for Construction Prague	TA: Technical and Test Institute
Trade name of the construction product	G&B Fissaggi Gebofix PRO VE-SF SISMIK Gebofix PRO VE-SF SISMIK Nordic
Product family to which the construction product belongs	Product area code: 33 Bonded injection type anchor for use in cracked and uncracked concrete
Manufacturer	G&B FISSAGGI Corso Savona, 22 10029 Villatellone (TO) ITALY
Manufacturing plant	G&B Fissaggi S.r.l. Plant 4
This European Technical Assessment contains	19 pages including 16 Annexes which form an integral part of this assessment.
This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of	EAD 330499-01-0601

Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and should be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full (excepted the confidential Annex(es) referred to above). However, partial reproduction may be made, with the written consent of the issuing Technical Assessment Body - Technical and Test Institute for Construction Prague. Any partial reproduction has to be identified as such.

1. Technical description of the product

The G&B Fissaggi Gebofix PRO VE-SF SISMIK, Gebofix PRO VE-SF SISMIK Nordic is a bonded anchor consisting of a cartridge with injection mortar and a steel element. The steel element consists of a commercial threaded rod with washer and hexagon nut in the range M8 to M30 or a reinforcing bar in the range of diameter 8 to 32 mm.

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The illustration and the description of the product are given in Annex A.

2. Specification of the intended use in accordance with the applicable EAD

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the products in relation to the expected economically reasonable working life of the works.

3. Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Static and quasi-static loading	
Resistance to steel failure (tension)	See Annex C1, C2, C4
Resistance to combined pull-out and concrete failure	See Annex C1, C2, C4
Resistance to concrete cone failure	See Annex C1, C2, C4
Edge distance to prevent splitting under load	See Annex C1, C2, C4
Robustness	See Annex C1, C2, C4
Maximum setting torque moment	See Annex B2
Minimum edge distance and spacing	See Annex B2
Resistance to steel failure (shear)	See Annex C3, C5
Resistance to pry-out failure	See Annex C3, C5
Resistance to concrete edge failure	See Annex C3, C5
Displacements under short term and long term loading	See Annex C6
Durability of metal parts	See Annex B1
Seismic performance C1 and C2	
Resistance to steel failure	See Annex C2, C3
Resistance to pull-out	See Annex C2
Factor for annular gap	See Annex C3
Displacement	See Annex C6

3.2 Hygiene, health and environment (BWR 3)

No performance determined.

3.3 General aspects relating to fitness for use

Durability and serviceability are only ensured if the specifications of intended use according to Annex B 1 are kept.

4. Assessment and verification of constancy of performance (AVCP) system applied with reference to its legal base

According to the Decision 96/582/EC of the European Commission¹ the system of assessment verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table apply.

Product	Intended use	Level or class	System
Metal anchors for use in concrete	For fixing and/or supporting to concrete, structural elements (which contributes to the stability of the works) or heavy units	-	1

5. Technical details necessary for the implementation of the AVCP system, as provided in the applicable EAD

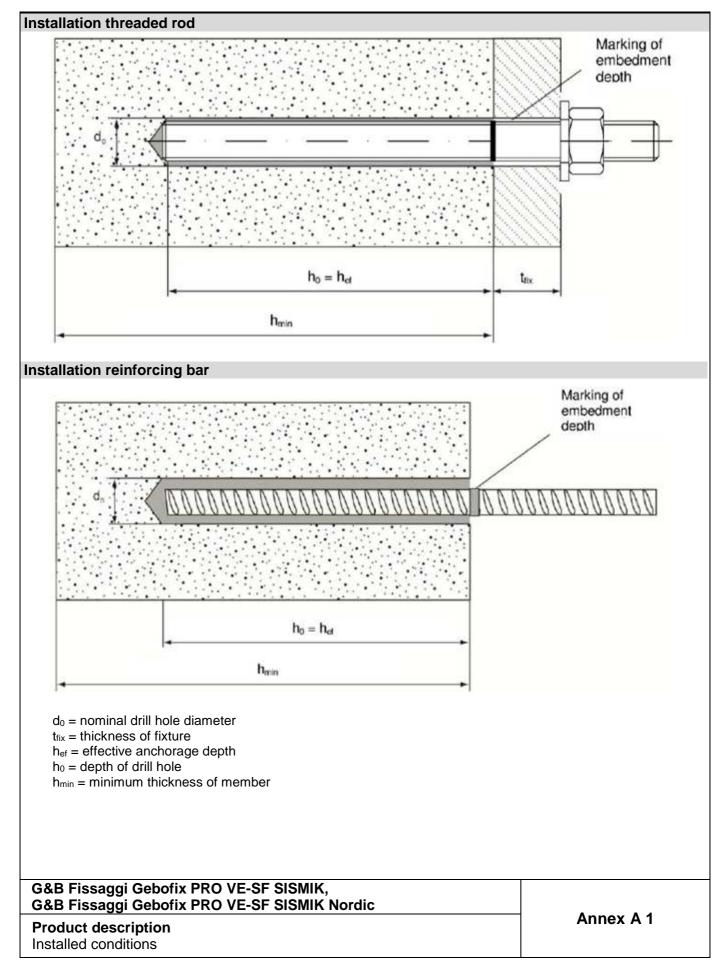
5.1 Tasks of the manufacturer

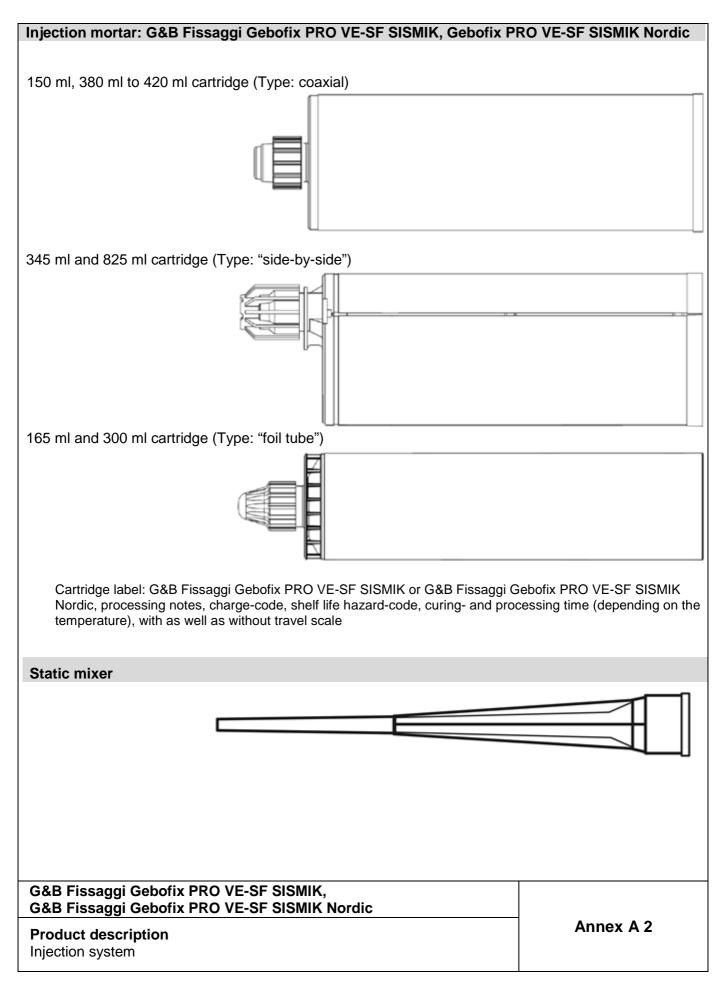
The manufacturer may only use raw materials stated in the technical documentation of this European Technical Assessment.

The factory production control shall be in accordance with the control plan which is a part of the technical documentation of this European Technical Assessment. The control plan is laid down in the context of the factory production control system operated by the manufacturer and deposited at Technical and Test Institute for Construction Prague.² The results of factory production control shall be recorded and evaluated in accordance with the provisions of the control plan.

5.2 Tasks of the notified bodies

The notified body shall retain the essential points of its actions referred to above and state the results obtained and conclusions drawn in a written report.


The notified certification body involved by the manufacturer shall issue a certificate of constancy of performance of the product stating the conformity with the provisions of this European Technical Assessment.


In cases where the provisions of the European Technical Assessment and its control plan are no longer fulfilled the notified body shall withdraw the certificate of constancy of performance and inform Technical and Test Institute for Construction Prague without delay.

¹ Official Journal of the European Communities L 254 of 08.10.1996

² The control plan is a confidential part of the documentation of the European Technical Assessment, but not published together with the ETA and only handed over to the approved body involved in the procedure of AVCP.

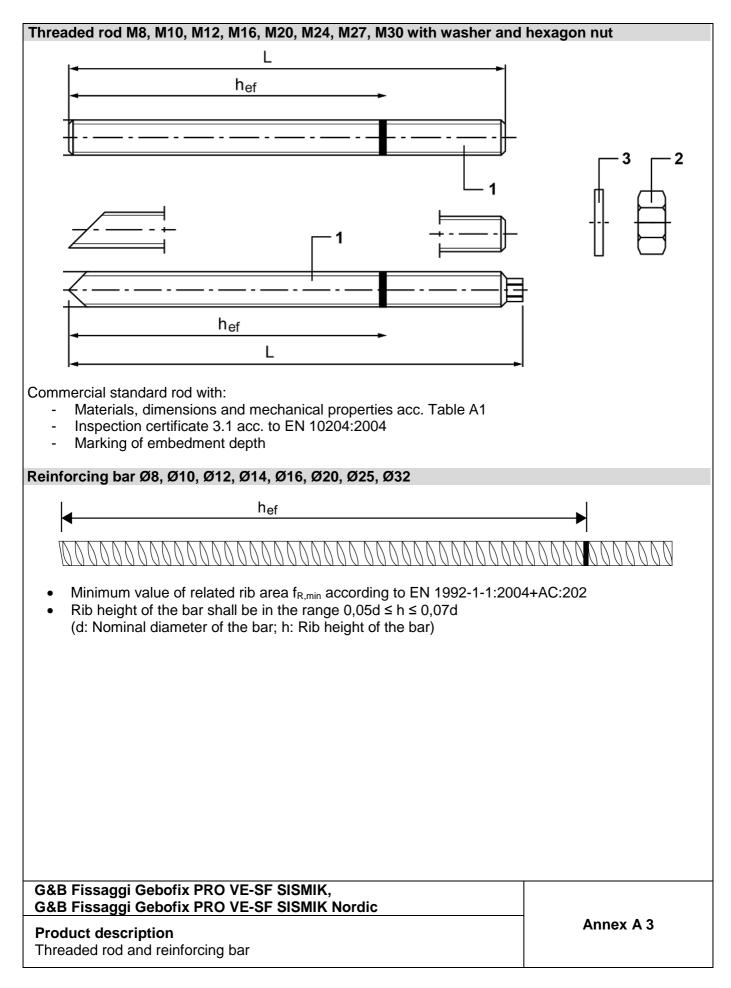


Table A1: Materials

Part	Designation	Material					
	zinc plated \geq 5 µm acc. to EN ISO 4042:						
Steel,	hot-dip galvanised ≥ 40 μm acc. to EN I						
		Steel, EN 10087:1998 or EN 10263:2001					
1	Anchor rod	Property class 4.6, 5.8, 8.8, EN 1993-1-8:2005+AC:2009					
		$A_5 > 8\%$ fracture elongation					
		Steel acc. to EN 10087:1998 or EN 10263:2001					
2	Hexagon nut, EN ISO 4032:2012	Property class 4 (for class 4.6 rod) EN ISO 898-2:2012,					
2		Property class 5 (for class 5.8 rod) EN ISO 898-2:2012,					
		Property class 8 (for class 8.8 rod) EN ISO 898-2:2012					
	Washer, EN ISO 887:2006,						
3	EN ISO 7089:2000, EN ISO 7093:2000	Steel, zinc plated or hot-dip galvanised					
	or EN ISO 7094:2000						
Stainl	ess steel						
1	Anchor rod	Material: A2-70, A4-70, A4-80, EN ISO 3506					
2	Hexagon nut	According to threaded rod					
L	EN ISO 4032						
	Washer						
3	EN ISO 887, EN ISO 7089,	According to threaded rod					
	EN ISO 7093 or EN ISO 7094						
High	corrosion resistant steel						
1	Anchor rod	Material: 1.4529, 1.4565, EN 10088-1					
2	Hexagon nut	According to threaded rod					
2	EN ISO 4032						
	Washer						
3	EN ISO 887, EN ISO 7089,	According to threaded rod					
	EN ISO 7093 or EN ISO 7094						
Reinf	orcing bars						
		Bars and de-coiled rods class B or C					
1	Rebar according to	fyk and k according to NDP or NCL of EN 1992-1-					
I	EN 1992-1-1:2004+AC:2010, Annex C	1/NA:2013					
		$f_{uk} = f_{tk} = k^* f_{yk}$					

G&B Fissaggi Gebofix PRO VE-SF SISMIK, G&B Fissaggi Gebofix PRO VE-SF SISMIK Nordic

Product description Materials Annex A 4

Specifications of intended use

Anchorages subject to:

- Static and quasi-static loads: M8 to M30, Rebar Ø8 to Ø32.
- Seismic performance category C1: threaded rod size M10, M12, M16, M20, M24
- Seismic performance category C2: threaded rod size M12, M16, M20

Base materials

- Reinforced or unreinforced normal weight concrete according to EN 206:2013.
- Strength classes C20/25 to C50/60 according to EN 206:2013
- Uncracked concrete: threaded rod M8 to M30, Rebar Ø8 to Ø32.
- Cracked concrete: threaded rod M12 to M24.

Temperature range:

- I: -40°C to +40°C (max long term temperature +24°C and max short term temperature +40°C)
- II: -40°C to +80°C (max long term temperature +50°C and max short term temperature +80°C)

Use conditions (Environmental conditions)

- (X1) Structures subject to dry internal conditions (zinc coated steel, stainless steel, high corrosion resistance steel).
- (X2) Structures subject to external atmospheric exposure including industrial and marine environment and to permanently damp internal condition, if no particular aggressive conditions exist (stainless steel A4, high corrosion resistance steel).
- (X3) Structures subject to external atmospheric exposure and to permanently damp internal condition, with particular aggressive conditions exist (high corrosion resistance steel).

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Concrete conditions:

- I1: installation in dry or wet (water saturated) concrete and use in service in dry or wet concrete.
- I2: installation in water-filled (not sea water) and use in service in dry or wet concrete.

Design:

- The anchorages are designed in accordance with the EN 1992-4 under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings.
- Anchorages under seismic actions (cracked concrete) have to be designed in accordance with EN 1992-4.

Installation:

- Hole drilling by hammer drill mode.
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.

Installation direction:

• D3 – downward and horizontal and upwards (e.g. overhead) installation

G&B Fissaggi Gebofix PRO VE-SF SISMIK, G&B Fissaggi Gebofix PRO VE-SF SISMIK Nordic

Intended use

Specifications

Table B1: Installation parameters for threaded rod

Anchor size		M8	M10	M12	M16	M20	M24	M27	M30
Nominal drill hole diameter	d ₀ [mm] =	10	12	14	18	22	26	30	35
Effective anchorage depth	h _{ef,min} [mm] =	64	80	96	128	160	192	216	240
Enecuve anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	480	540	600
Diameter of clearance hole in the fixture	d _f [mm] ≤	9	12	14	18	22	26	30	33
Diameter of the steel brush	d₅ [mm] ≥	12	14	16	20	26	30	35	43
Torque moment	max T _{inst} [Nm] ≤	10	20	40	80	150	200	240	275
Thickness of fixture	t _{fix,min} [mm] >				C)			
	t _{fix,max} [mm] <				15	00			
Minimum thickness of member	h _{min} [mm]	h	l _{ef} + 30 mn	n ≥ 100 mi	m		h _{ef} +	2d ₀	
Minimum spacing	s _{min} [mm]	35	40	50	65	80	96	110	120
Minimum edge distance	c _{min} [mm]	35	40	50	65	80	96	110	120

Table B2: Installation parameters for rebar

Rebar size		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Nominal drill hole diameter	d ₀ [mm] =	12	14	16	20	25	32	40
Effective anchorage depth	h _{ef,min} [mm] =	64	80	96	128	160	200	256
Enective anchorage depth	h _{ef,max} [mm] =	160	200	240	320	400	500	640
Diameter of the steel brush	d _b [mm] ≥	14	16	18	22	31	35	43
Minimum thickness of member	h _{min} [mm]		h _{ef} + 30 mn	n ≥ 100 mm	l		h _{ef} + 2d ₀	
Minimum spacing	s _{min} [mm]	35	40	50	65	80	100	130
Minimum edge distance	c _{min} [mm]	35	40	50	65	80	100	130

G&B Fissaggi Gebofix PRO VE-SF SISMIK, G&B Fissaggi Gebofix PRO VE-SF SISMIK Nordic

Intended use

Installation parameters

Table B3: Param	eters for cleanin	g and setting tool	S	
Anchor	Size (mm)	Nominal drill bit diameter d₀ (mm)	Steel Brush d₀ (mm)	Steel Brush (min brush diameter) d _{b,min} (mm)
		8		1111100
	M8	10	12	10.5
	M10	12	14	12.5
Threaded	M12	14	16	14.5
Rod	M16	18	20	18.5
-	M20	22	26	22.5
4	M24	26	30	26.5
	M27	30	35	30.5
	M30	35	43	35.5
	Ø8	12	14	12.5
	Ø10	14	16	14.5
Deher	Ø12	16	18	16.5
Rebar	Ø16	20	22	20.5
	Ø20	25	31	25.5
	Ø25	32	35	32.5
	Ø32	40	43	40.5

Hand pump (volume 750 ml) Drill bit diameter (d₀): 10 mm to 20 mm

Compressed air tool (min 6 bar) Drill bit diameter (d₀): 10 mm to 40 mm

G&B Fissaggi Gebofix PRO VE-SF SISMIK, G&B Fissaggi Gebofix PRO VE-SF SISMIK Nordic

Intended use

Cleaning and setting tools

Installation instruction	S		
<u>]</u>	1.	Drill with hammer drill a hole into the base material required by the selected anchor (Table B1 or Table the drill hole shall be filled with mortar	
4x	2a.	Attention! Standing water in the bore hole must a Starting from the bottom or back of the bore compressed air (min. 6 bar) or a hand pump (Anne the bore hole ground is not reached an extension sh	hole, blow the hole clean with x B3) a minimum of four times. If
or 4x		The hand pump can <u>only</u> be used for anchor sizes ir hole diameter 20mm or embedment depth up to 240	
		Compressed air (min. 6 bar) can be used for all size concrete.	s in cracked and uncracked
4x	2b.	Check brush diameter (Table B3) and attach the bruscrewdriver. Brush the hole with an appropriate size minimum of four times.	ed wire brush > d _{b,min} (Table B3) a
A ←		If the bore hole ground is not reached with the brush (Table B3).	n, a brush extension shall be used
4x	2c.	Finally blow the hole clean again with compressed minimum of four times. If the bore hole ground is used.	not reached an extension shall be
+		The hand pump can <u>only</u> be used for anchor sizes in hole diameter 20mm or embedment depth up to 240 Compressed air (min. 6 bar) can be used for all	mm.
or		concrete.	
4x ⊰≥=0 ←		After cleaning, the bore hole has to be protected appropriate way, until dispensing the mortar in cleaning repeated has to be directly before dispe	the bore hole. If necessary, the
	3.	Attach a supplied static mixing nozzle to the cartrid correct dispensing tool. Cut off the foil tube clip befor For every working interruption longer than the working as for new cartridges, a new static-mixer shall be us	ng time (Table B4 and B5) as well
	4.	Prior to inserting the anchor rod into the filled embedment depth shall be marked on the anchor ro	
min. 3 full stroke	5.	Prior to dispensing into the anchor hole, squeeze of full strokes and discard non-uniformly mixed adhe shows a consistent colour. For foil tube cartridges is six full strokes.	sive components until the mortar
G&B Fissaggi Gebofix G&B Fissaggi Gebofix			
Intended use Installation instructions			Annex B 4

stallation instructions	s (cont	inuation
	6.	Starting from the bottom or back of the cleaned anchor hole fill the hole up t approximately two-thirds with adhesive. Slowly withdraw the static mixing nozzle a the hole fills to avoid creating air pockets. For embedment depth larger than 19 mm an extension nozzle shall be used. For overhead and horizontal installation i bore holes a piston plug and extansion nozzle according to Annex B3 shall be used.
	7.	Observe the gel-/ Working times given in Tabe B4 and B5. Push the threaded rod or reinforcing bar into the anchor hole while turning slightly t ensure positive distribution of the adhesive until the embedment depth is reached The anchor should be free of dirt, grease, oil or other foreign material.
×	8.	Be sure that the anchor is fully seated at the bottom of the hole and that excess mortar is visible at the top of the hole. If these requirements are not maintained, the application has to be renewed. For overhead application the anchor rod should be fixed (e.g. wedges).
	9.	Allow the adhesive to cure to the specified time to applying any load or torque. D not move or load the anchor until it is fully cured (attend Table B4 and B5).
	10.	After full curing, the add-on part can be installed with the max. torque (Table B1) busing a calibrated torque wrench.

G&B Fissaggi Gebofix PRO VE-SF SISMIK, G&B Fissaggi Gebofix PRO VE-SF SISMIK Nordic

Intended Use

Installation instructions

Table B4: Minimum curing time – G&B Fissaggi Gebofix PRO VE-SF SISMIK

Base material temperature	Gel time (working time)	Minimum curing time in dry concrete ¹⁾					
+5°C to +9°C	10 min	145 min					
+10°C to +19°C	6 min	85 min					
+20°C to +29°C	4 min	50 min					
+30°C	4 min	40 min					
Cartridge temperature	+5°C to +20°C						

¹⁾ In wet concrete the curing time <u>must</u> be doubled.

Table B5: Minimum curing time – G&B Fissaggi Gebofix PRO VE-SF SISMIK Nordic

Base material temperature	Gel time (working time)	Minimum curing time in dry concrete ¹⁾				
0°C to +4°C	10 min	2.5 h				
+5°C to +9°C	6 min	80 min				
+10°C	6 min	60 min				
Cartridge temperature	0°C to +20°C					

¹⁾ In wet concrete the curing time <u>must</u> be doubled.

G&B Fissaggi Gebofix PRO VE-SF SISMIK, G&B Fissaggi Gebofix PRO VE-SF SISMIK Nordic

Intended Use Curing time

Table C1: Characteristic values of resistance for threaded rods under tension loads in uncracked concrete

Anchor size threaded	rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure				<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>		
Characteristic tension re	esistance	N _{Rk,s}	N _{Rk,s} [kN] A _s x f _{uk}								
Combined pull-out an	d concrete cone failure	!	- 1	<u> </u>							
Characteristic bond resi	istance in uncracked cor	crete C20/	25								
Temperature range I:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	10.0	9.0	8.5	8.0	7.5	7.0	5.5	5.0
40°C / 24°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	8.0	7.0	6.5	6.0	No P	erforman	ce Deter	mined
Temperature range II:	dry and wet concrete	$\tau_{Rk,ucr}$	[N/mm ²]	9.0	8.5	8.0	7.5	7.0	6.5	5.0	4.5
80°C / 50°C	flooded bore hole	$\tau_{Rk,ucr}$	[N/mm ²]	7.5	6.5	6.0	5.5	No P	erforman	ce Deter	mined
	•	C30/37					1	.04			
Increasing factors for o	concrete Ψ_{c}	C40/50					1	.08			
		C50/60					1	.10			
Concrete cone failure	9										
Factor for concrete co	k _{ucr,N}	[-]				1	1				
Edge distance	C _{cr,N}	[mm]				1.5	h _{ef}				
Axial distance		S _{cr,N}	[mm]	3.0 h _{ef}							
Splitting failure											
			h / h _{ef} ≥ 2.0	1.0	h _{ef}	h	hef				
						- 8	2,0	1			
Edge distance c _{cr,sp} [mn	n] for	2.0 >	h / h _{ef} > 1.3	4.6 h _{ef}	– 1.8 h	1,3			1		
			h / h _{ef} ≤ 1.3	2.26	2.26 h _{ef}		1.0-her		et 2,26	2,26 het	
Axial distance			[mm]				2.0				
	ar (dr. and wat apparate)	S _{cr,sp}	[mm]			1	.2	C _{cr,sp}			.4
	or (dry and wet concrete)	• • • • •			1		.2	No D			
Installation safety factor (flooded bore hole)		Vinct	γinst		I	.4 No Perform			enonnan		

G&B Fissaggi Gebofix PRO VE-SF SISMIK,	
G&B Fissaggi Gebofix PRO VE-SF SISMIK Nordic	
Performances	Annex C 1
Characteristic values of resistance for threaded rods under tension loads	
in uncracked concrete	

Table C2: Characteristic values of resistance for threaded rods under tension loads in cracked concrete

Anchor size threaded r	od				M10	M12	M16	M20	M24		
Steel failure	ou			WITU	IVI I Z	IVITO	IVIZO	11/24			
Characteristic tension rea	[kN]			$A_s \ge f_{uk}$							
Combined pull-out and		N _{Rk,s,eq,C} ailure									
Characteristic bond resis	stance in cracked	concrete	e C20/25								
			τ _{Rk.cr}	[N/mm ²]	5.0	5.0	5.0	5.0	5.0		
	dry and wet concrete		$\tau_{Rk,p,eq,C1}$	[N/mm ²]	3.1	3.7	3.7	3.7	3.8		
Temperature range I:			$\tau_{Rk,p,eq,C2}$	[N/mm ²]	NPD	1.1	1.3	1.5	NPD		
40°Ċ/24°C flooded bore hole			τ _{Rk.cr}	[N/mm ²]	4.0	5.0	5.0	No Perf	ormance		
		le	$\tau_{Rk,p,eq,C1}$	[N/mm ²]	3.1	3.7	3.7	Determined			
					No Performance Determined						
	dry and wet concrete		$\tau_{Rk.cr}$	[N/mm ²]	3.5	4.0	4.0	4.0	4.0		
			$\tau_{Rk,p,eq,C1}$	[N/mm ²]	2.2	2.7	2.7	2.7	2.8		
Temperature range II:			$\tau_{Rk,p,eq,C2}$	[N/mm ²]	NPD	1.0	1.2	1.4	NPD		
80°C/50°C			$\tau_{Rk.cr}$	[N/mm ²]	3.0	4.0	4.0	No Performance			
	flooded bore ho	le	$\tau_{Rk,p,eq,C1}$	[N/mm ²]	1.9	2.7	2.7	Determined			
			$\tau_{Rk,p,eq,C2}$	[N/mm ²]		No Pe	formance Det	ermined			
			C30/37		1.04						
Increasing factors for cor Ψ_c	ncrete		C40/50		1.08						
			C50/60				1.10				
Concrete cone failure											
Factor for concrete cone	failure		k _{cr.N}	[-]			7.7				
Edge distance			C _{cr.N}	[mm]			1.5 h _{ef}				
Axial distance			S _{cr.N}	[mm]			3.0 h _{ef}				
Installation safety factor	(dry and wet conc	rete)	γinst			1.2					
Installation safety factor	(flooded bore hole	e)	Yinst			1.4		N	PD		

The anchor for seismic performance shall be used with minimum rupture elongation after fracture A_5 equal to 19%.

G&B Fissaggi Gebofix PRO VE-SF SISMIK.	
G&B Fissaggi Gebofix PRO VE-SF SISMIK Nordic	
Performances	Annex C 2
Characteristic values of resistance for threaded rods under tension loads	
in cracked concrete	

Table C3: Characteristic values of resistance for threaded rods under shear loads in cracked and uncracked concrete

Anchor size threaded rod			M8	M10	M12	M16	M20	M24	M27	M30
Steel failure without lever arm				I <u></u>		I <u></u>	. <u></u>	I <u></u>	I <u></u>	
	[kN]									
Characteristic shear resistance	V _{Rk.s.eq.C1}	[kN]	NPD		(0.35 x A _s x	f _{uk}		N	IPD
	V _{Rk.s.eq.C2}	[kN]	N	PD	(0.26 x A _s x	f _{uk}	No Perfo	ormance D	etermine
Characteristic shear load resistan	$ce V_{Rk,s,eq}$ shall	be multipl	ied by follo	wing reduc	ction factor	for hot-dip	galvanizo	ed commer	cial standa	ard rods
Reduction factor	α _{v,h-dg,c1}		NPD	0.57	0.56	0.49	0.56	0.61	NF	PD
for hot-dip galvanized rods	α _{v,h-dg,c2}		NF	PD	0.46 0.61 0.61			NPD		
Factor for annular gap	α _{gap}					0	.5			
Ductility factor	k ₇				1.0 for ste	el with rupt	ure elonga	ation $A_5 > 8$	%	
Steel failure with lever arm										
	M ⁰ _{Rk.s}	[Nm]				1.2 *	W _{el} * f _{uk}			
Characteristic bending moment	M ⁰ _{Rk.s.eq.C1} M ⁰ _{Rk.s.eq.C2}	[Nm] [Nm]			No	Performar	nce Detern	nined		
Concrete pry-out failure										
Factor for resistance to pry-out failure	k ₈		2.0							
Concrete edge failure										
Effective length of anchor	l _f	[mm]				l _f = min(h	n _{ef} ; 8 d _{nom})			
Outside diameter of anchor	d _{nom}	[mm]	8	10	12	16	20	24	27	30

The anchor for seismic performance shall be used with minimum rupture elongation after fracture A5 equal to 19%.

G&B Fissaggi Gebofix PRO VE-SF SISMIK. G&B Fissaggi Gebofix PRO VE-SF SISMIK Nordic

Performances

Characteristic values of resistance for threaded rods under shear loads in cracked and uncracked concrete

Table C4: Characteristic values of resistance for rebar under tension loads in uncracked concrete

Anchor size reinforcing	g bar			Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32
Steel failure						1	•	•		
Characteristic tension re	sistance	N _{Rk.s}	[kN]				A _s x f _{uk}			
Combined pull-out and	l concrete cone failui	re								
Characteristic bond resis	stance in uncracked co	oncrete C2	20/25							
Dry and wet Cemperature range I: concrete		τ _{Rk.ucr}	[N/mm ²]	8.5	9.0	9.0	8.0	8.0	8.0	5.0
40°C/24°C	Flooded bore hole	$\tau_{Rk.ucr}$	[N/mm ²]	7.5	8.5	8.5	8.0		NPD	
Temperature range II:	Dry and wet concrete	τ _{Rk.ucr}	[N/mm ²]	7.5	8.0	8.0	7.5	7.5	7.0	4.5
80°C/50°C	Flooded bore hole	$\tau_{Rk.ucr}$	[N/mm ²]	6.5	7.0	7.0	6.5		NPD	
Increasing factors for co	ncrete Ψ _c	C50/60					1.0	·		
Concrete cone failure										
Factor for concrete cone	k _{ucr}	[-]	11							
Edge distance			[mm]	1.5 h _{ef}						
Axial distance		S _{cr.N}	[mm]	3.0 h _{ef}						
Splitting failure										
		h / h _{ef} ≥ 2.0		1.0 h _{ef} h/h _{ef}						
Edge distance c _{cr.sp} [mm] for		2.0 > h / h _{ef} > 1.3		4.6 h _{ef} – 1.8 h		1,3		_		
		h / h _{ef} ≤ 1.3		2.26 h _{ef}			1,0·h _{ef} 2,26·h _{ef}			
Axial distance		S _{cr.sp}	[mm]	2 c _{cr.sp}						
Partial safety factor (dry	and wet concrete)	γinst	i				1.2			
	1		1.4				NPD			

G&B Fissaggi Gebofix PRO VE-SF SISMIK.	
G&B Fissaggi Gebofix PRO VE-SF SISMIK Nordic	
Performances	Ar
Characteristic values of resistance for rebar under tension loads	
in uncracked concrete	

Table C5: Characteristic values of resistance for rebar rods under shear loads in uncracked concrete

Anchor size reinforcing bar		Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32		
Steel failure without lever arm										
Characteristic shear resistance	V _{Rk.s}	[kN]			0	.50 x A _s x	f _{uk}			
Ductility factor	k ₇			1.0 for	steel with	rupture el	ongation A	A₅ > 8%		
Steel failure with lever arm										
Characteristic bending moment	M ⁰ _{Rk.s}	[Nm]			1	.2 * W _{el} * f	: uk			
Concrete pry-out failure										
Factor for resistance to pry-out failure	k ₈					2.0				
Concrete edge failure										
Effective length of anchor	l _f	[mm]] $I_f = min(h_{ef}; 8 d_{nom})$							
Outside diameter of anchor	d _{nom}	[mm]	8 10 12 16 20 25 32						32	

G&B Fissaggi Gebofix PRO VE-SF SISMIK. G&B Fissaggi Gebofix PRO VE-SF SISMIK Nordic

Performances

Characteristic values of resistance for rebar under shear loads

Table C6: Displacement of threaded rod under tension and shear load

Anchor size			M8	M10	M12	M16	M20	M24	M27	M30
Uncracked concrete										
Tension load										
Dianlagoment	δ_{N0}	[mm/kN]	0,05	0,04	0,03	0,02	0,02	0,02	0,01	0,01
Displacement -	δ _{N∞}	[mm/kN]	0,11	0,09	0,06	0,04	0,03	0,02	0,02	0,02
Shear load										
Displacement	δ_{V0}	[mm/kN]	0,48	0,30	0,20	0,11	0,10	0,08	0,06	0,05
Displacement	δ _{V∞}	[mm/kN]	0,72	0,45	0,30	0,17	0,14	0,12	0,10	0,08
Cracked concrete										
Tension load										
Displacement	δ_{N0}	[mm]		0,08	0,09	0,05	0,03	0,02		
Displacement	δ _{V∞}	[mm/kN]		0,51	0,32	0,18	0,13	0,11		

Table C7: Displacement of rebar rod under tension and shear load

Rebar size	Ø8	Ø10	Ø12	Ø16	Ø20	Ø25	Ø32		
Uncracked concrete									
Tension load									
	δ_{N0}	[mm/kN]	0,04	0,03	0,02	0,02	0,01	0,01	0,01
Displacement	δ _{N∞}	[mm/kN]	0,09	0,07	0,05	0,03	0,02	0,01	0,01
Shear load									
Displacement	δ_{V0}	[mm/kN]	0,05	0,04	0,03	0,02	0,01	0,01	0,01
Displacement	δ _{∨∞}	[mm/kN]	0,08	0,06	0,05	0,03	0,02	0,01	0,01

Table C8: Displacement of threaded rod under tension and shear load – seismic category C2

Anchor size			M12	M16	M20
Displacement	$\delta_{\text{N,eq(DLS)}}$	[mm]	0,57	0,35	0,85
	$\delta_{\text{N,eq(ULS)}}$	[mm]	7,62	6,75	7,28
	$\delta_{\text{V,eq(DLS)}}$	[mm]	5,29	4,12	4,94
	$\delta_{\text{V,eq(ULS)}}$	[mm]	10,20	9,05	10,99

G&B Fissaggi Gebofix PRO VE-SF SISMIK. G&B Fissaggi Gebofix PRO VE-SF SISMIK Nordic

Performances

Displacements